US 2004/0187096 Al

[0045]

VIDEO CARD CLASS - TABULATED VIEW
CLASS NAME: VideoCard

ATTRIBUTES Type Comments

video__memory Enum Choice: ‘1 MB’, 2 MB’, ‘4 MB’

pixel clock integer
display Monitor
[0046]

VIDEO CARD CLASS - PSEUDO-CODE

class VideoCard; # define the video card class
attributes: # define the attributes required by the VideoCard class
{
video__memory: # define the characteristics of the attribute
video__memory
{
type : enum ; # it’s of type enum
having a choice as defined ...
choice : (*1MB’, 2MB’, ‘4MB’);
pixel__clock:
type: integer;
display:

type: Monitor; # the display of a type Monitor

b
b
[0047]
MONITOR CLASS - TABULATED VIEW
CLASS NAME: Monitor
ATTRIBUTES Type Comments
screen__resolution Integer
refresh__rate Integer
[0048]

MONITOR CLASS - PSEUDO CODE

class Monitor; # define the monitor class

{

attributes: # define the attributes required by the monitor class

screen__resolution: # define the characteristics of the attribute
screen__resolution

type : integer;

refresh_rate: # define the characteristics of the variable
refresh_ rate
{

type: enum; # its an enumerated type

Sep. 23, 2004

-continued

MONITOR CLASS - PSEUDO CODE

choice: (‘50Hz’, ‘60Hz’, <75Hz’);

¥
¥
¥
[0049]
PROCESSOR CLASS - TABULATED VIEW
CLASS NAME: Processor

ATTRIBUTES Type:
clock_ frequency integer min = 50, max = 200
cache__size enum Choice: 256 b’, ‘512 b°, ‘1024 b’
[0050]

PROCESSOR CLASS - PSEUDO CODE

class Processor; # define the processor class

attributes: # define the attributes required by the video card class

{
clock_ frequency: # define the characteristics of the attribute
clock__frequency
{
type : integer; # it’s of type integer
min = 50 ; # set the minimum value acceptable
max = 200 ; # set the maximum value acceptable
h
cache_size: # define the characteristics of the attribute cache_ size
{
type: enum; # its an enumerated type
choice: (‘256b°, ‘512b’, <1024b%);
b
b
b

[0051] In a Perl-type implementation the class implemen-
tations defined using the declarative class definitions above
are created at run-time by the class-making module. A main
program creates the configuration model in memory by
creating instances (or objects) of the class implementations.
The main program may, for example, implement a user
interface allowing users to read, set or modify attributes of
each object making up the configuration model. It will be
appreciated that the main program may also use classes
defined in a more conventional, non-declarative, manner.

[0052] As previously described, the use of generic class-
making modules along with declarative class definitions has
currently been limited for use where there are no dependen-
cies between nodes or leaves of a configuration tree. The
present invention helps to overcome such disadvantages by
providing a framework through which dependency informa-
tion may defined in a declarative manner and thereby be
used with a generic class-making module.

[0053] One of the problems of using generic class-making
modules, such as Class::MethodMaker, is that referencing of
objects arranged in a hierarchical tree-like structure becomes

